If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-4x=8
We move all terms to the left:
8x^2-4x-(8)=0
a = 8; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·8·(-8)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{17}}{2*8}=\frac{4-4\sqrt{17}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{17}}{2*8}=\frac{4+4\sqrt{17}}{16} $
| x-6÷2=4 | | -20+m=-3 | | q/4+8=5 | | 3x+6/35=2x-18/5 | | 12x+8-16=28 | | 5z+130=8z |